The role of activity-dependent network depression in the expression and self-regulation of spontaneous activity in the developing spinal cord.
نویسندگان
چکیده
Spontaneous episodic activity occurs throughout the developing nervous system because immature circuits are hyperexcitable. It is not fully understood how the temporal pattern of this activity is regulated. Here, we study the role of activity-dependent depression of network excitability in the generation and regulation of spontaneous activity in the embryonic chick spinal cord. We demonstrate that the duration of an episode of activity depends on the network excitability at the beginning of the episode. We found a positive correlation between episode duration and the preceding inter-episode interval, but not with the following interval, suggesting that episode onset is stochastic whereas episode termination occurs deterministically, when network excitability falls to a fixed level. This is true over a wide range of developmental stages and under blockade of glutamatergic or GABAergic/glycinergic synapses. We also demonstrate that during glutamatergic blockade the remaining part of the network becomes more excitable, compensating for the loss of glutamatergic synapses and allowing spontaneous activity to recover. This compensatory increase in the excitability of the remaining network reflects the progressive increase in synaptic efficacy that occurs in the absence of activity. Therefore, the mechanism responsible for the episodic nature of the activity automatically renders this activity robust to network disruptions. The results are presented using the framework of our computational model of spontaneous activity in the developing cord. Specifically, we show how they follow logically from a bistable network with a slow activity-dependent depression switching periodically between the active and inactive states.
منابع مشابه
GABA-mediated membrane oscillations as coincidence detectors for enhancing synaptic efficacy in the developing hippocampus
Spontaneously occurring neuronal oscillations constitute a hallmark of developmental networks. They have been observed in the retina, neocortex, hippocampus, thalamus and spinal cord. In the immature hippocampus the so-called ‘giant depolarizing potentials’ (GDPs) are network-driven membrane oscillations characterized by recurrent membrane depolarization with superimposed fast action potentials...
متن کاملGABA-mediated membrane oscillations as coincidence detectors for enhancing synaptic efficacy in the developing hippocampus
Spontaneously occurring neuronal oscillations constitute a hallmark of developmental networks. They have been observed in the retina, neocortex, hippocampus, thalamus and spinal cord. In the immature hippocampus the so-called ‘giant depolarizing potentials’ (GDPs) are network-driven membrane oscillations characterized by recurrent membrane depolarization with superimposed fast action potentials...
متن کاملNicotinomid Adenin Dinucleotide Phosphate-Diaphorase (NADPH-d) Activity and CB-28 kDa Immunoreactivity in Spinal Neurons of Neonatal Rats after a Peripheral Nerve Lesion
Our previous studies have shown that median and ulnar nerve lesion induced calbindin (CB) immunoreactivity in some injured motoneurons in developing rats. Motoneuron death induced by sciatic nerve transection in neonatal rats has been related to induction of neuronal isoform of nitric oxide synthase (nNOS). The present study investigated whether expression of CB and nicotinomid adenin dinucleot...
متن کاملAllopregnanolone suppresses diabetes-induced neuropathic pain and motor deficit through inhibition of GABAA receptor down-regulation in the spinal cord of diabetic rats
Objective(s):Painful diabetic neuropathy is associated with hyperexcitability and hyperactivity of spinal cord neurons. However, its underlying pathophysiological mechanisms have not been fully clarified. Induction of excitatory/inhibitory neurotransmission imbalance at the spinal cord seems to account for the abnormal neuronal activity in diabetes. Protective properties of neurosteroids have b...
متن کاملEffect of Oleuropein on Tissue Myeloperoxidase Activity in Experimental Spinal Cord Trauma
Background: Neutrophil infiltration plays an important role in inflammatory reactions following spinal cord injury (SCI) and these cells cause substantial secondary tissue damage. The purpose of this study was to determine the effect of oleuropein (OE) on myeloperoxidase (MPO) activity as an index of neutrophil infiltration. Methods: Rats were randomly divided into four groups of 7 rats each as...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 21 22 شماره
صفحات -
تاریخ انتشار 2001